Glutaredoxin‐1 promotes lymphangioleiomyomatosis progression through inhibiting Bim‐mediated apoptosis via COX2/PGE2/ERK pathway

Author:

Feng Ya1,Li Tianjiao1,Li Yin1,Lin Zhoujun1,Han Xiao1,Pei Xiaolin1,Zhang Yupeng1,Li Fei1,Yang Juan1,Shao Di2,Li Chenggang1ORCID

Affiliation:

1. State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy Nankai University Tianjin P. R. China

2. Chongqing University Central Hospital Chongqing Emergency Medical Center Chongqing P. R. China

Abstract

AbstractBackgroundLymphangioleiomyomatosis (LAM) is a female‐predominant interstitial lung disease, characterized by progressive cyst formation and respiratory failure. Clinical treatment with the mTORC1 inhibitor rapamycin could relieve partially the respiratory symptoms, but not curative. It is urgent to illustrate the fundamental mechanisms of TSC2 deficiency to the development of LAM, especially mTORC1‐independent mechanisms. Glutaredoxin‐1 (Glrx), an essential glutathione (GSH)‐dependent thiol‐oxidoreductase, maintains redox homeostasis and participates in various processes via controlling protein GSH adducts. Redox signalling through protein GSH adducts in LAM remains largely elusive. Here, we demonstrate the underlying mechanism of Glrx in the pathogenesis of LAM.Methods1. Abnormal Glrx expression in various kinds of human malignancies was identified by the GEPIA tumour database, and the expression of Glrx in LAM‐derived cells was detected by real‐time quantitative reverse transcription (RT‐qPCR) and immunoblot. 2. Stable Glrx knockdown cell line was established to evaluate cellular impact. 3. Cell viability was determined by CCK8 assay. 4. Apoptotic cell number and intracellular reactive oxygen species (ROS) level were quantified by flow cytometry. 5. Cox2 expression and PGE2 production were detected to clarify the mechanism of Bim expression modulated by Glrx. 6. S‐glutathionylated p65 was enriched and detected by immunoprecipitation and the direct regulation of Glrx on p65 was determined. 7. The xenograft animal model was established and photon flux was analyzed using IVIS Spectrum.ResultsIn LAM, TSC2 negatively regulated abnormal Glrx expression and activation in a mTORC1‐independent manner. Knockdown of Glrx increased the expression of Bim and the accumulation of ROS, together with elevated S‐glutathionylated proteins, contributing to the induction of apoptotic cell death and inhibited cell proliferation. Knockdown of Glrx in TSC2‐deficient LAM cells increased GSH adducts on nuclear factor‐kappa B p65, which contributed to a decrease in the expression of Cox2 and the biosynthesis of PGE2. Inhibition of PGE2 metabolism attenuated phosphorylation of ERK, which led to the accumulation of Bim, due to the imbalance of its phosphorylation and proteasome degradation. In xenograft tumour models, knockdown of Glrx in TSC2‐deficient LAM cells inhibited tumour growth and increased tumour cell apoptosis.ConclusionsCollectively, we provide a novel redox‐dependent mechanism in the pathogenesis of LAM and propose that Glrx may be a beneficial strategy for the treatment of LAM or other TSC‐related diseases.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3