Affiliation:
1. Barshop Institute for Longevity and Aging Studies University of Texas Health San Antonio San Antonio Texas USA
2. Division of Diabetes Department of Medicine University of Texas Health San Antonio San Antonio Texas USA
3. Department of Pathology Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases University of Texas Health San Antonio San Antonio Texas USA
4. Department of Anatomy and Neurobiology Virginia Commonwealth University Richmond Virginia USA
5. Research Division McGuire Veterans Affairs Medical Center Richmond Virginia USA
Abstract
AbstractBackgroundDespite being a brain disorder, Alzheimer's disease (AD) is often accompanied by peripheral organ dysregulations (e.g., loss of bladder control in late‐stage AD), which highly rely on spinal cord coordination. However, the causal factor(s) for peripheral organ dysregulation in AD remain elusive.MethodsThe central nervous system (CNS) is enriched in lipids. We applied quantitative shotgun lipidomics to determine lipid profiles of human AD spinal cord tissues. Additionally, a CNS sulfatide (ST)‐deficient mouse model was used to study the lipidome, transcriptome and peripheral organ phenotypes of ST loss.ResultsWe observed marked myelin lipid reduction in the spinal cord of AD subjects versus cognitively normal individuals. Among which, levels of ST, a myelin‐enriched lipid class, were strongly and negatively associated with the severity of AD. A CNS myelin‐specific ST‐deficient mouse model was used to further identify the causes and consequences of spinal cord lipidome changes. Interestingly, ST deficiency led to spinal cord lipidome and transcriptome profiles highly resembling those observed in AD, characterized by decline of multiple myelin‐enriched lipid classes and enhanced inflammatory responses, respectively. These changes significantly disrupted spinal cord function and led to substantial enlargement of urinary bladder in ST‐deficient mice.ConclusionsOur study identified CNS ST deficiency as a causal factor for AD‐like lipid dysregulation, inflammation response and ultimately the development of bladder disorders. Targeting to maintain ST levels may serve as a promising strategy for the prevention and treatment of AD‐related peripheral disorders.
Funder
National Institute on Aging
National Institutes of Health
Subject
Molecular Medicine,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献