The Dietary Fiber Inulin Slows Progression of Chronic Kidney Disease–Mineral Bone Disorder (CKD‐MBD) in a Rat Model of CKD

Author:

Biruete Annabel12ORCID,Chen Neal X.2,Metzger Corinne E.3ORCID,Srinivasan Shruthi2,O'Neill Kalisha2,Fallen Paul B.3,Fonseca Austin2,Wilson Hannah E.2,de Loor Henriette4,Evenepoel Pieter45ORCID,Swanson Kelly S.6,Allen Matthew R.23ORCID,Moe Sharon M.23ORCID

Affiliation:

1. Department of Nutrition Science Purdue University West Lafayette IN USA

2. Department of Medicine, Division of Nephrology Indiana University School of Medicine Indianapolis IN USA

3. Department of Anatomy, Cell Biology, and Physiology Indiana University School of Medicine Indianapolis IN USA

4. KU Leuven Department of Microbiology and Immunology Nephrology and Renal Transplantation Research Group, KU Leuven Leuven Belgium

5. Department of Nephrology and Renal Transplantation University Hospitals Leuven Leuven Belgium

6. Department of Animal Sciences University of Illinois at Urbana‐Champaign Urbana IL USA

Abstract

AbstractChronic kidney disease (CKD)–mineral bone disorder (CKD‐MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD‐MBD is unknown. To determine the effect of fiber on CKD‐MBD, we fed the Cy/+ rat with progressive CKD a casein‐based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non‐fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD‐MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut‐derived uremic toxins. Results were analyzed by two‐way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor‐23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short‐chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD‐MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut‐derived uremic toxins. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3