Online facial expression recognition based on graph convolution and long short memory networks

Author:

Xu Chujie1,Zheng Wenjie1,Du Yong1ORCID,Li Tiejun1,Yuan Zhansheng1

Affiliation:

1. School of Ocean Information Engineering Jimei University Fujian China

Abstract

Video‐based facial expression recognition (FER) models have achieved higher accuracy with more computation, which is not suitable for online deployment in mobile intelligent terminals. Facial landmarks can model facial expression changes with their spatial location information instead of texture features. But classical convolution operation cannot make full use of landmark information. To this end, in this paper, we propose a novel long short memory network (LSTM) by embedding graph convolution named GELSTM for online video‐based FER in mobile intelligent terminals. Specifically, we construct landmark‐based face graph data from the client. On the server side, we introduce graph convolution which can effectively mine spatial dependencies information in a landmark‐based facial graph. Moreover, the extracted landmark's features are fed to LSTM for temporal feature aggregation. We conduct experiments on the facial expression dataset and the results show our proposed method shows superior performance compared to other deep models.

Publisher

Wiley

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference26 articles.

1. Online Education and Its Effective Practice: A Research Review

2. Emotion recognition of students based on facial expressions in online education based on the perspective of computer simulation;Wang W;Complexity,2020

3. Deep convolution neural network for image recognition

4. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures

5. Neighborhood linear discriminant analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3