Bright dual‐color electrochemiluminescence of a structurally determined Pt1Ag18 nanocluster

Author:

Yin Bing1,Jiang Lirong1,Wang Xiaojian1,Liu Ying1,Kuang Kaiyang1,Jing Mengmeng1,Fang Chunmin1,Zhou Chuanjun1,Chen Shuang1,Zhu Manzhou1ORCID

Affiliation:

1. Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei China

Abstract

AbstractMetal nanoclusters possess excellent electrochemical, optical, and catalytic properties, but correlating these properties remains challenging, which is the foundation to generate electrochemiluminescence (ECL). Herein, we report for the first time that a structurally determined Pt1Ag18 nanocluster generates intense ECL and simultaneously enhances the ECL of carbon dots (CDs) via an electrocatalytic effect. Pt1Ag18 nanocluster show aggregation‐induced emission enhancement and aggregation‐induced ECL enhancement under light and electrochemical stimulation, respectively. In the presence of tripropylamine (TPrA) as a coreactant, solid Pt1Ag18 shows unprecedented ECL efficiency, which is more than nine times higher than that of 1 mM Ru(bpy)32+ with the same TPrA concentration. Potential‐resolved ECL spectra reveal two ECL emission bands in the presence of TPrA. The ECL emission centered at 650 nm is assigned to the solid Pt1Ag18 nanocluster, consistent with the peak wavelength in self‐annihilation ECL and photoluminescence of the solid state. The ECL emission centered at 820 nm is assigned to the CDs on the glassy carbon electrode. The electrocatalytic effect of the nanoclusters enhanced the ECL of the CDs by a factor of more than 180 in comparison to that without nanoclusters. Based on the combined optical and electrochemical results, the ECL generation pathways and mechanisms of Pt1Ag18 and CDs are proposed. These findings are extremely promising for designing multifunctional nanocluster luminophores with strong emissions and developing ratiometric sensing devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3