Parametrische Modellierung und generatives tiefes Lernen für den Brückenentwurf

Author:

Kraus Michael A.1ORCID,Kuhn Sophia V.2,Hodel Anna2,Bischof Rafael3,Maissen Alessandro4,Salamanca Mino Luis4,Pérez‐Cruz Fernando4

Affiliation:

1. ETH Zürich Institut für Baustatik und Konstruktion Professur für Massiv- und Brückenbau Stefano-Franscini-Platz 5 8093 Zürich Schweiz

2. ETH Zürich Institut für Baustatik und Konstruktion Professur für Massiv- und Brückenbau Stefano-Franscini-Platz 5 8093 Zürich Schweiz

3. Andreasturm, 18th floor Andreasstr. 5 8050 Zürich Schweiz

4. Andreasturm, 18th floor Andreasstr. 5 8050 Zürich Schweiz

Abstract

AbstractIn Anbetracht der erheblichen Umweltauswirkungen des Bauwesens wird die Analyse und v. a. Optimierung der Nachhaltigkeit von Strukturen unter Beibehaltung des etablierten Zuverlässigkeitsniveaus immer wichtiger. Im Hochbausektor existieren erste Werkzeuge zur Lebenszyklusanalyse, diese sind jedoch nicht direkt übertragbar auf Brückentragwerke. Dieser Beitrag fasst die wesentlichen Ansätze und Ergebnisse von aktuellen Forschungsprojekten der Autoren an der ETH zusammen und erläutert insbesondere einen neuen Deep‐Learning‐basierten Ansatz zur Erkundung und Modellierung des Entwurfsraums parametrischer Brückenmodelle und deren Leistungsbewertungen und veranschaulicht die Anwendung für eine Mehrzieloptimierung von Stahlbetonrahmenbrücken. Zunächst werden Daten unter Verwendung eines parametrischen Brückenmodells sowie der Ankoppelung von Analysesoftware synthetisch generiert und anschließend bedingte variationelle Autoencoder (CVAE) als Metamodell trainiert. Der CVAE dient im Rahmen des konzeptionellen Brückenentwurfs als effizienter Co‐Pilot sowohl für die Vorwärts‐ als auch Rückwärtsanalyse. Die mit dem CVAE durchgeführte Sensitivitätsanalyse zeigt Beziehungen zwischen Entwurfsparametern und/oder Leistungskenngrößen sowie Optimierungspotenziale auf. Das hier vorgestellte integrierte Framework besitzt das Potenzial zur Realisierung einer effizienten Brückenplanung unter insbesondere den Kriterien der Nachhaltigkeit und Tragsicherheit und kann problemlos auf andere parametrische Fragestellungen erweitert werden.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3