Multiple biomaterials for immediate implant placement tissue repair: Current status and future perspectives

Author:

Su Xiaoqi12,Jia Shasha12,Wang Xueya12,Zhao Baodong12,Wang Guowei34,Wang Xiaojing124ORCID

Affiliation:

1. Department of Oral Implantology The Affiliated Hospital of Qingdao University Qingdao China

2. School of Stomatology Qingdao University Qingdao China

3. Department of Stomatology No. 971 Hospital of the Chinese Navy Qingdao Shandong China

4. Department of Stomatology Lingshui Li Autonomous County People's Hospital Lingshui Hainan China

Abstract

AbstractImmediate oral implant placement is a widely accepted technique, known for its efficacy in reducing treatment duration, surgical visits, and overall healing time. One of the primary challenges associated with immediate implant placement is the attainment of initial stability. The inevitable loss of bone and soft tissue after extraction poses a risk to implant osseointegration in both vertical and horizontal dimensions. Guided tissue regeneration/guided bone regeneration (GTR/GBR) is a well‐established method for periodontal regeneration. However, current GTR/GBR membranes lack tissue inherent regeneration properties and necessitate combination with grafts to enhance tissue recovery. In this context, biomaterials have emerged as a promising option due to their good biocompatibility, biodegradability, and bioactive properties. They present a potential alternative to standard autologous/allograft procedures. The field of biomaterials for bone regeneration has rapidly evolved, developing new guiding materials and engineering techniques. These advances have become integral in addressing tissue defects at the immediate implant site. Various materials such as bioceramics, natural polymers, and synthetic polymers have been used for tissue repair. This article undertakes an etiological examination of tissue deficiency associated with immediate implant placement. Additionally, it reviews the advantages and disadvantages of a variety of biomaterials, aiming to provide references for clinical treatment and areas for further investigation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3