Metal‐Organic Framework‐Based Composites for Rapid and Sensitive Virus Detection: Current Status and Future Prospective

Author:

ElGazar Aya1,Sabouni Rana1ORCID,Ghommem Mehdi23ORCID

Affiliation:

1. Department of Chemical and Biological Engineering American University of Sharjah Sharjah 2666 United Arab Emirates

2. Department of Mechanical Engineering American University of Sharjah Sharjah 2666 United Arab Emirates

3. Energy, Water, and Sustainable Environment Research Center American University of Sharjah Sharjah United Arab Emirates

Abstract

AbstractThe current spread of various viruses has negatively affected human life and health. Developing enhanced virus diagnostic techniques to mitigate future outbreaks is becoming vital. Metal‐organic frameworks (MOFs) have gained significant attention for their potential applications in virus detection because of their outstanding features, including high surface area, tunable properties, and adjustable pore size. Integrating nanomaterials with MOFs can also further enhance these properties, creating a new class of materials referred to as MOF‐based nanocomposites. This review paper provides an overview of the MOF‐based nanocomposites' status and future prospects for enhanced virus detection. The recent advances in the synthesis and functionalization of MOF and MOF‐based nanocomposites for virus detection are discussed. The paper describes the different types of detection platforms, including nucleic acid and immunological detection, as well as the mechanisms of MOF‐based sensors and the techniques used to synthesize MOFs and MOF‐based nanocomposites for virus detection. Additionally, the review paper explores the potential of integrating MOFs into real sensing devices and their prospects in real‐life applications. Finally, the paper examines the current challenges of these biosensing platforms. Overall, the review paper highlights the capability of MOFs and MOF‐based nanocomposites as versatile and practical platforms for virus detection and provides a comprehensive overview of the latest advancements in this area of research.

Funder

American University of Sharjah

Publisher

Wiley

Reference187 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3