Manganese Oxide Nanoparticles: An Insight into Structure, Synthesis and Applications

Author:

Yadav Pinky1,Bhaduri Ayana1,Thakur Atul23ORCID

Affiliation:

1. Amity University Haryana Department of Physics Amity School of Applied Sciences 122413 Gurugram India

2. Amity University Haryana Amity Institute of Nanotechnology 122413 Gurugram India

3. Nanjing University of Information Science & Technology School of Electronics and Information Engineering 210044 Nanjing China

Abstract

AbstractManganese oxide nanoparticles with different crystal phases, morphologies, and structural diversity along with their exceptional properties like high specific surface area, a high fraction of surface atoms, non‐toxic nature, and excellent redox properties are drawing attention for various applications in storage science, especially in the batteries, super‐capacitors, energy conversion, and the environmental catalysis field. Precise control of particle size, morphology, surface area, Mnx+ oxidation state, etc. is the utmost important aspect to explore their application to the full potential. Here, the emphasis is on the recent trends in manganese oxide research – structure, synthesis, and applications. The structure of numerous crystalline phases of manganese oxide nanoparticles are summerized and several facile chemical synthesis processes to achieve the desired crystalline/amorphous structure are discoursed. Temperature and different synthesis conditions dependent phase transformations of β‐MnO2, α‐Mn2O3, and Mn3O4 from α‐MnO2 are discussed as well. The pragmatic approach directs that the application field is mostly controlled by the morphologies.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Filtration and Separation,Process Chemistry and Technology,Biochemistry,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3