Secondary succession of soil, plants, and bacteria following the recovery of abandoned croplands in two semi‐arid steppes

Author:

Zhang Bin1,Zhang Feng1ORCID,Wang Xiaolei2,Chen Daling1,Tian Yongqi1,Wang Yiyang1,Zheng Jiahua1,Li Shaoyu1,Li Zhiguo1,Han Guodong1,Zhao Mengli1ORCID

Affiliation:

1. Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment Inner Mongolia Agricultural University Hohhot China

2. Chifeng Agricultural and Animal Husbandry Scientific Research Institute, Inner Mongolia Chifeng China

Abstract

AbstractIn many parts of the world, former agricultural sites have been abandoned particularly when productivity is marginal or policies are implemented to develop ecosystem recovery. Understanding the recovery trajectory of soil, plants, and microbes is critical for developing restoration plans and the most effective policies. Here, we evaluated the changes in soil properties, plants, and the bacterial community along a chronosequence of agricultural abandonment (5, 15, and 20 years) in two different types of steppes (desert and typical steppes), respectively, in Inner Mongolia, China. Active farmland and natural grassland were selected as reference sites. In both study sites, soil water content and soil organic carbon content increased, while bulk density and nitrogen decreased across the chronosequence, all becoming comparable to that of natural grassland. Plant diversity, above‐ and below‐ground biomass increased, while perennial graminoids and forbs replaced annuals as the dominant functional groups with the elongation of abandonment. Bacterial diversity increased along the chronosequence in the drier desert steppe, but not in the wetter typical steppe. Over the chronosequence, Acidobacteria, a phyla tending to live in lower carbon conditions, were replaced by Proteobacteria and Actinobacteria, which favor abundant carbon environments. Redundancy analysis shows that soil organic carbon, below‐ground plant biomass, and nitrate were the main factors that driving bacterial community composition. Our results demonstrated that spontaneous recovery without any human disturbance was an effective way for the restoration of arid and semi‐arid grassland ecosystems in Inner Mongolia, and emphasized the importance of soil and plant restoration for the recovery of bacterial community.

Funder

Natural Science Foundation of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3