Design and Fabrication of a Hierarchical Structured Pressure Sensor Based on BaTiO3/PVDF Nanofibers via Near‐Field Electrospinning

Author:

Kong Haoyu1,Jin Yuan1ORCID,Li Guangyong1,Zhang Minghua1,Du Jianke1

Affiliation:

1. Smart Materials and Advanced Structure Laboratory School of Mechanical Engineering and Mechanics Ningbo University Ningbo Zhejiang 315211 China

Abstract

Herein, a simple and low‐cost fabrication method for flexible piezoelectric pressure sensors with hierarchical structures over large areas is presented. First, polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3, BTO) composite membranes are fabricated through near‐field electrospinning, and the hierarchical structured membrane (HSM) is obtained by spreading the flat membrane on the designed mold and drying. Then, the effect of encapsulation schemes on the piezoelectric properties of the sensor is investigated by combining different membranes with different PDMS substrates. The output voltage under periodic loads shows that the encapsulation scheme of “the hierarchical structured membrane with a hierarchical structured substrate” (HHS) can provide the highest peak voltage attributed to its largest contact area, which increases the active area (deformation area) for piezoelectricity generation. Also, the HHS with a bulge of 2 mm can produce a maximum output voltage of 2.32 V under a periodic load of 2 N, 2.5 Hz. Finally, the HHS pressure sensors are used for monitoring human motions, including joint bending, walking, and jumping, and the results show that the presented hierarchically microstructured flexible piezoelectric pressure sensor has great potential for applications of for human‐activity monitoring and wearable bioelectronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3