Finite Element Modeling of Crumpling of Metallic Thin Foil

Author:

Kwon Jihye1,Bouaziz Olivier23,Kim Hyoung Seop145ORCID,Estrin Yuri67

Affiliation:

1. Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

2. Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3) CNRS Université de Lorraine Arts et Métier Paris Tech F 57000 Metz France

3. LABoratoire d’EXcellence DAMAS Université de Lorraine 57000 Metz France

4. Graduate Institute for Ferrous Technology Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

5. Advanced Institute for Materials Research (WPI-AIMR) Tohoku University Sendai 980-8577 Japan

6. Department of Materials Science and Engineering Monash University Clayton VIC 3800 Australia

7. Department of Mechanical Engineering The University of Western Australia Crawley WA 6009 Australia

Abstract

Crumpled metallic thin foils are very promising as weight‐saving and energy‐absorption materials that can easily be fabricated. To achieve practical industrial applications, it is necessary to improve the understanding of the process of crumpling and the mechanical behavior of crumpled materials considering their complex internal structures. Herein, two possible strategies for computational simulations of crumpled material under closed‐die compression are presented for the first time. The first one entails computations performed at the scale of the foil (direct method), while the second one considers the structure as a continuum with porosity. The analysis performed shows that the continuum‐based approach is more suitable for representing the macroscopic mechanical behavior of crumpled materials with the relative densities ranging from 2% to 40%. An additional benefit is the low computational cost and high efficacy of the porous continuum approach. However, the direct method is shown to be the preferable computational tool when the internal structural patterns changes need to be adequately reproduced, e.g., for a better prediction of the mechanical response under complex loading conditions.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3