High‐Temperature Behavior of the Heat‐Treated and Overaged AlSi10Mg Alloy Produced by Laser‐Based Powder Bed Fusion and Comparison with Conventional Al–Si–Mg‐Casting Alloys

Author:

Di Egidio Gianluca1ORCID,Morri Alessandro1,Ceschini Lorella1,Tonelli Lavinia1

Affiliation:

1. Department of Industrial Engineering (DIN) Alma Mater Studiorum University of Bologna Viale del Risorgimento 4 40136 Bologna Italy

Abstract

In recent years, the AlSi10Mg alloy produced by laser‐based powder bed fusion (L‐PBF) has gained more attention for increasing the strength‐to‐weight ratio in structural parts subjected to severe operating conditions. Herein, the effects of thermal exposure (0–48 h at 200, 210, and 245 °C) on the metastable microstructure of the L‐PBF AlSi10Mg alloy and the high‐temperature (200 °C) tensile properties post‐overaging (41 h at 210 °C) of the heat‐treated alloy is investigated. In particular, two specific heat treatment conditions, currently neglected in the literature, are analyzed: i) T5 heat treatment (direct artificial aging: 4 h at 160 °C), and ii) the innovative T6R heat treatment (rapid solution: 10 min at 510 °C, and artificial aging: 6 h at 160 °C). The T5 shows a lower decrease in mechanical properties after thermal exposure and during the high‐temperature tensile test than the T6R. This behavior is related to the higher efficiency of the submicrometric cellular structure in hindering the dislocation motion. In addition, the T5 has good tensile properties compared to high‐temperature Al–Si–Mg‐ and Al–Si–Cu–Mg‐casting alloys, representing an attractive option in future industrial applications characterized by operating temperatures up to 200 °C.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3