Enhanced Mechanical Energy Harvesting in Triboelectric Nanogenerator by the Reinforcement of Polypyrrole‐Decorated rGO Sheets in PDMS

Author:

Elavathingal Johny Jelmy1,Jose Divya2,Kochuveetil Vavachan Vijoy3,Kachirayil Joseph Saji34,John Honey14ORCID

Affiliation:

1. Department of Polymer Science and Rubber Technology Cochin University of Science and Technology Cochin 22 Kerala India

2. Department of Chemistry Bharata Mata College Thrikkakara Cochin 21 Kerala India

3. International School of Photonics Cochin University of Science and Technology Cochin 22 Kerala India

4. Inter University Centre for Nanomaterials and Devices Cochin University of Science and Technology Cochin 22 Kerala India

Abstract

Energy harvesting triboelectric nanogenerators (TENGs) to scavenge unused mechanical energy have received significant attention in this decade. Herein, the development of reduced graphene oxide (rGO):polypyrrole (PPy) hybrid‐modified polydimethylsiloxane (PDMS) as TENG for various device applications is reported. The bulk of PDMS is altered by different fillers such as rGO, PPy, and the binary hybrids of rGO and PPy with varying weight ratios. Among various PDMS composites, 1 wt% of 1:8 rGO:PPy–PDMS composite exhibits higher TENG responses than other PDMS composite. The superior TENG performances of 1 wt% 1:8 rGO:PPy–PDMS composite are attributed to the formation of intensified negative charges inside the PDMS matrix. This charge intensification in the composite is due to various mechanisms, including the charge trapping ability of rGO:PPy filler, microcapacitor formation by introducing hybrid filler in the system with proper conducting networks, and the electron‐donating nature of PPy conducting polymer. A 3D stacked device proposed using 1 wt% 1:8 rGO:PPy–PDMS composite delivered a short‐circuit current of 16 μA and an open‐circuit potential of 60 V by simple palm pressing. Also, the ability of the stacked device for charging/powering portable devices and light‐emitting diodes is demonstrated.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3