Mechanical Investigation of Solid MNs Penetration into Skin Using Finite Element Analysis

Author:

Liu Tianqi12,Sun Yanfang3,Zhang Wenjing1,Wang Rui12,Lv Xinyu1,Nie Lei4,Shavandi Amin5,Yunusov Khaydar E.6,Jiang Guohua12ORCID

Affiliation:

1. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China

2. International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province Hangzhou 310018 China

3. College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 Zhejiang China

4. College of Life Sciences Xinyang Normal University Xinyang 464000 China

5. École polytechnique de Bruxelles Université libre de Bruxelles (ULB) 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 ‐ CP 165/61 Brussels 1050 Belgium

6. Institute of Polymer Chemistry and Physics Uzbekistan Academy of Sciences Tashkent 100128 Uzbekistan

Abstract

In the past two decades, microneedles (MNs) patches as a promising platform have been extensively investigated for transdermal delivery of drug drugs, cells, and active substances and extraction of bio‐fluids. To realize painless, efficacious, and safe transdermal delivery, these MNs must penetrate the skin to the appropriate depth without breaking or bending. Therefore, effective prediction of mechanical properties such as skin penetration of microneedles is crucial for the material and structural design of MNs. In this article, a numerical simulation of the insertion process of the microneedle into various types of skin modeling is reported using the finite element method. The effective stress failure criterion has been coupled with the element deletion technique to predict the complete insertion process. The numerical results show a good agreement with the reported experimental data for the deformation and failure of the skin and the insertion force.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3