A Novel Approach for Rapid Material Library Generation Using Laser‐Remelting

Author:

Gaag Tobias1ORCID,Heidowitzsch Maximilian1ORCID,Galgon Florian1ORCID,Körner Carolin1ORCID,Zenk Christopher H.1ORCID

Affiliation:

1. Institute II (WTM) Department of Materials Science & Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Martensstrasse 5 91058 Erlangen Germany

Abstract

Cost‐ and time‐demanding trial‐and‐error methods have been the historical route for alloy development. A combinatorial approach can significantly simplify and accelerate the development process by characterization of composition dependent properties on material libraries, which are specimens or sets of specimens that map out a certain composition space, often employing composition profiles. Herein, a promising production method for such a material library is proposed: laser‐remelting of stacked blocks of different compositions is evaluated for its suitability to produce material libraries, using the ternary CrCoNi system for a proof‐of‐concept. The composition profiles of the successfully created CrCoNi material library were measured by electron probe micro analysis. The intermixing has a length of about 2.5 mm. An analytical model describing the intermixing process is proposed and shows value in the estimation of the intermixing length after the first melting step. The comparison of the experimental microstructure observations from this work and from literature shows mostly good agreement with some deviations related to microsegregation and finite quenching cooling rates, which is supported by thermodynamic calculations regarding phase stability. In the single‐phase region, the mechanical properties as measured via microhardness indentation are discussed as potential candidates for model validation.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3