Mechanically Driven Solidly Mounted Resonator‐Based Nanoelectromechanical Systems Magnetoelectric Antennas

Author:

Liang Xianfeng12,Chen Huaihao2,Sun Neville2,Luo Bin2ORCID,Golubeva Elizaveta3,Müller Cai3,Mahat Sushant4ORCID,Wei Yuyi2,Dong Cunzheng2ORCID,Zaeimbashi Mohsen2,He Yifan2ORCID,Gao Yuan5ORCID,Lin Hwaider5,Cahill David G.4ORCID,Sanghadasa Mohan6ORCID,McCord Jeffrey37ORCID,Sun Nian X.25ORCID

Affiliation:

1. Institute of Electric Power Sensing Technology State Grid Smart Grid Research Institute Co., LTD. Beijing 102209 China

2. Department of Electrical and Computer Engineering Northeastern University Boston MA 02115 USA

3. Institute for Materials Science Kiel University 24143 Kiel Germany

4. Department of Materials Science and Engineering Engineering and Materials Research Laboratory University of Illinois at Urbana-Champaign Urbana IL 61801 USA

5. Winchester Technologies, LLC Burlington MA 01803 USA

6. U.S. Army Combat Capabilities Development Command Aviation & Missile Center Redstone Arsenal Huntsville AL 35898 USA

7. KiNSIS - Kiel Nano, Surface and Interface Science Kiel University 24143 Kiel Germany

Abstract

The miniaturization of antennas has been a significant challenge in the field of electronics and telecommunications. In recent years, mechanically driven thin‐film bulk acoustic resonator (FBAR) magnetoelectric (ME) antennas have emerged as a promising solution, demonstrating superior miniaturization capabilities compared to conventional state‐of‐the‐art compact antennas. While nanoelectromechanical systems (NEMS) FBAR ME antennas exhibit high miniaturization potential, their suspended thin‐film heterostructures render them fragile and exhibit low power handling capabilities. The findings demonstrate that solidly mounted resonator (SMR) NEMS ME antennas on a Bragg acoustic resonant reflector offer a compelling solution. With a circular resonating disk of 200 μm diameter operating at 1.75 GHz, these SMR‐based antennas display a high antenna gain of −18.8 dBi and a 1 dB compression point (P1dB) of 30.4 dBm. Compared to same‐size FBAR ME antennas with a free‐standing membrane, SMR‐based antennas exhibit significantly higher structural stability and 23.3 dB stronger power handling capability, in addition to easier fabrication processes. The compatibility of the simple fabrication processes with complementary metal–oxide–semiconductor technology, along with the dramatic miniaturization, high power handling, robust mechanical properties, and much higher antenna radiation gain, make these SMR‐based ME antennas a promising candidate for future antenna systems.

Funder

W. M. Keck Foundation

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3