ABC‐Auxetics: An Implicit Design Approach for Negative Poisson's Ratio Materials

Author:

Ebert Matthew1,Adhikari Riddhi1,Hasan Md Kamrul12,Lupo Kai1,Akleman Ergun34,Pharr Matt15,Krishnamurthy Vinayak R.14ORCID

Affiliation:

1. Department of Mechanical Engineering Texas A&M University College Station 77843 TX USA

2. Pacific Northwest National Laboratory Richland 99354 WA USA

3. Department of Visualization Texas A&M University College Station 77843 TX USA

4. Department of Computer Science, & Engineering (by Affiliation) Texas A&M University College Station 77843 TX USA

5. Materials Science & Engineering (by Affiliation) Texas A&M University College Station 77843 TX USA

Abstract

A novel methodology is introduced for designing auxetic (negative Poisson's ratio) structures based on topological principles and is demonstrated by investigating a new class of auxetics based on two‐dimensional (2D) textile weave patterns. Conventional methodology for designing auxetic materials typically involves determining a single deformable block (a unit cell) of material whose shape results in auxetic behavior. Consequently, patterning such a unit cell in a 2D (or 3D) domain results in a larger structure that exhibits overall auxetic behavior. Such an approach naturally relies on some prior intuition and experience regarding which unit cells may be auxetic. Second, tuning the properties of the resulting structures is typically limited to parametric variations of the geometry of a specific type of unit cell. Thus, most of the currently known auxetic structures belong to a selected few classes of unit cell geometries that are explicitly defined in accordance with a specified topological (i.e., grid structure). Herein, a new class of auxetic structures is demonstrated that, while periodic, can be generated implicitly, i.e., without reference to a specific unit cell design. The approach leverages weave‐based parameters (ABC), resulting in a rich design space for auxetics that is previously unexplored.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

College of Engineering, Texas A and M University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3