Experimental and Numerical Studies of Densification and Grain Growth of 8YSZ during Flash Sintering

Author:

Wang Shufan1ORCID,Mishra Tarini Prasad2,Deng Yuanbin13,Kaletsch Anke13,Bram Martin24,Broeckmann Christoph13

Affiliation:

1. Institute of Applied Powder Metallurgy and Ceramics at RWTH Aachen e.V. (IAPK) Augustinerbach 4 52062 Aachen Germany

2. Forschungszentrum Jülich GmbH Institute of Energy and Climate Research: Materials Synthesis and Processing (IEK-1) 52425 Jülich Germany

3. Institute for Materials Applications in Mechanical Engineering (IWM) RWTH Aachen University Augustinerbach 4 52062 Aachen Germany

4. Ruhr-Universität Bochum Institut für Werkstoffe Universitätsstraße 150 44801 Bochum Germany

Abstract

As a promising sintering technique, flash sintering utilizes high electric fields to achieve rapid densification at low furnace temperatures. Various factors can influence the densification rate during flash sintering, such as ultrahigh heating rates, extra‐high sample temperatures, and electric field. However, the determining factor of the densification rate and the key mechanism during densification are still under debate. Herein, the densification and grain growth kinetic during flash sintering of 8 mol% Y2O3‐stabilized ZrO2 (8YSZ) is studied experimentally and numerically using finite element method (FEM). The roles of Joule heating and heating rate on the densification are investigated by comparing flash sintering with conventional sintering. An apparently smaller activation energy for the material transport resulting in densification is obtained by flash sintering ( =424 kJ mol−1) compared to the conventional sintering ( = 691 kJ mol−1). In addition, a constitutive model is implemented to study both the densification and the grain growth during flash and conventional sintering. Furthermore, the effect of electrical polarity on the density and the grain size evolution during flash sintering of 8YSZ is also investigated. The simulation results of average density and grain size inhomogeneity agree well with the experimental data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3