Dry and Lubrication Sliding Wear Characteristics and Wear Mechanism Mapping for In Situ Al–25Mg2Si Composites

Author:

Bhandari Rahul1ORCID,Biswas Prosanta1ORCID,Mallik Manab1,Mondal Manas Kumar1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering National Institute of Technology, Durgapur Durgapur 713209 West Bengal India

Abstract

This study investigates the wear characteristics of Al–25Mg2Si composite synthesized via gravity casting. The research aims to understand the influence of applied load, test temperature, contact condition (dry and lubrication), and sliding distance on wear characteristics. Results show that higher loads and temperatures lead to increased wear loss and coefficient of friction. The worn surface morphology for higher loads and temperature shows deeper scratches and grooves, indicating severity in wear. The debris size and volume increase with an increase in load and temperature. The dominant mechanism is abrasive, adhesive, and oxidative for both the room‐ and high‐temperature dry sliding conditions. However adhesive and oxidative wear increase with the increase in test temperature. Abrasive wear is the only wear mechanism present during the lubricating sliding condition. Wear transition is noticed during the wear map analysis subjected to load, temperature, and sliding distance. In the case of room‐temperature test, severe–moderate–mild wear transition occurs with the increase in sliding distance and mild–moderate–severe wear transition occurs with the increase in test temperature and applied load. The roughness of the worn surface increases with an increase in applied load and temperature and the use of lubricant hugely reduces the surface roughness.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3