Affiliation:
1. State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi’an 710072 P. R. China
2. Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China Northwestern Polytechnical University Xi’an 710072 P. R. China
Abstract
The refinement of β grains is an effective approach to optimize the grain boundary α phase and enhance the mechanical properties for laser‐directed energy deposited (L‐DED) titanium alloys. In this study, the primary β grain size is refined by adding 0.05 and 0.10 wt% boron in Ti55531, respectively. It was found that the addition of trace boron can not only reduce the primary β grain size during molten pool solidification process, but also can suppress the primary β grain coarsening during in‐situ thermal cycling process. The Ti55531 + 0.05B alloy exhibited higher strength and elongation. This is attributed to the enhanced coordinated deformation ability resulting from the refined β grains and little harmful effect resulting from the presence of needle TiB. In contrast, when the boron content increased to 0.10 wt%, the harmful effect of excessive TiB whiskers at the grain boundaries outweighed the favorable effect of the further β grain refinement, which leads to the decrease in plasticity. This study suggests that an appropriate boron content added can refine primary β grain significantly and meanwhile avoid too much TiB precipitation, achieving superior comprehensive mechanical properties for additive manufacturing near β titanium alloy.
Funder
State Key Laboratory of Solidification Processing