Life Prediction for Directed Energy Deposition‐Manufactured 316L Stainless Steel using a Coupled Crystal Plasticity–Machine Learning Framework

Author:

Ye Wenye1ORCID,Zhang Xing2,Hohl Jake1,Liao Yiliang2,Mushongera Leslie T.1

Affiliation:

1. Department of Chemical & Materials Engineering University of Nevada Reno NV 89557 USA

2. Department of Industrial and Manufacturing Systems Engineering Iowa State University Ames IA 50011 USA

Abstract

Additively manufactured stainless steels have become increasingly popular due to their desirable properties, but their mechanical behavior in structural parts is not yet fully understood. Specifically, the impact of columnar microstructures on fatigue behavior is still unclear. A typical directed energy deposition (DED)‐fabricated 316L stainless steel microstructure consists of distinct zones with equiaxed and columnar grains. To answer the question of how these zones of a DED‐fabricated 316L stainless steel microstructure affect the local mechanical behavior individually, such as the fatigue strength, stress/strain distribution, and fatigue life, crystal plasticity simulations are conducted to investigate the influence of microstructure on local mechanical behavior such as fatigue strength, stress/strain distribution, and fatigue life. The simulations find that columnar microstructures exhibit better fatigue strength than equiaxed structures when the load is parallel to the major axis of the columnar grains, but the strength decreases when the load is perpendicular. This study also uses machine learning to predict fatigue life, which shows good agreement with crystal plasticity modeling. The study suggests that the combined crystal plasticity–machine learning approach is an effective way to predict the fatigue behavior of additively manufactured components.

Funder

National Science Foundation

Iowa State University

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3