Laser In Situ Joining as a Novel Approach for Joining Large‐Scale Thermoplastic Carbon Fiber‐Reinforced Polymer Aircraft Structures

Author:

Pohl Eric1ORCID,Langer Maurice1,Rauscher Peter1,Bleil Niklas1,Lasagni Andrés Fabián12

Affiliation:

1. Bonding and Fiber Composite Technology Fraunhofer Institute for Material and Beam Technology IWS Dresden Winterbergstraße 28 Dresden 01277 Germany

2. Institute of Manufacturing Technology Technische Universität Dresden George‐Bähr‐Str. 3c 01069 Dresden Germany

Abstract

Thermoplastic matrix composites are a viable option to reduce the carbon footprint during the life of an aircraft due to their ability to be molten and resolidified again. Tape‐based layup processes, such as automated tape placement, are well‐examined but have not seen extensive use in large‐scale joining applications, since they have to be processed layer‐by‐layer. In contrast, the advanced laser in situ joining method (CONTIjoin) utilizes fully consolidated and cut‐to‐size multilayered laminates, enabling the continuous layup of tailored laminates aligned with the mechanical application requirements. Herein, sample joints are manufactured using CONTIjoin technology, describing the general process principle, and are compared with samples produced using a standard heat press process. The base material, carbon fiber‐reinforced LMPAEK (low‐melt polyaryletherketone) is characterized using infrared spectroscopy. Using a 3.5 kW carbon dioxide (CO2) laser (10.6 μm wavelength) coupled with highly dynamic beam deflection, multidirectional reinforced laminates with up to six plies are processed to produce 24‐ply plates. The influence of joining temperatures up to 400 °C on the joint quality is investigated. Cross‐cuts are examined and interlaminar shear strength tests are conducted. With CONTIjoin, maximum strengths of 48.5 MPa are observed, reaching over 90% of the heat press reference.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3