Enhancement of Piezoelectric Response in Yttrium Aluminum Nitride (YxAl1‐xN) Thin Films

Author:

Pandit Shardul1ORCID,Schneider Michael1,Schwarz Sabine2,Schmid Ulrich1

Affiliation:

1. Institute of Sensor and Actuator Systems TU Wien Gusshausstrasse 27-29 A-1040 Vienna Austria

2. University Service Center for Transmission Electron Microscopy (USTEM) TU Wien Wiedner Hauptstrasse 8–10/057-02 1040 Vienna Austria

Abstract

Alloying rare earth elements into aluminum nitride (AlN) thin films to increase the piezoelectric response has gained a lot of attention in the past few years. Many rare earth elements are investigated in which scandium alloying resulted in the highest piezoelectric response for AlN. At the same time, researchers have also theoretically explored yttrium alloying as a feasible and economical alternative to scandium. Herein, for the first time, experimentally, the increase of the piezoelectric response of sputter‐deposited YxAl1–xN thin films as a function of increasing yttrium concentration as predicted by density functional theory calculations is demonstrated. Using differently manufactured targets, YxAl1–xN thin films with four different yttrium alloying concentrations (9, 12, 15, and 20 at%). are synthesized. Detailed thin‐film analysis is carried out and the highest value of d33 measured is 12 pC N−1 for Y0.2Al0.8N, which is a 250% increase compared to pure AlN. Even more, the Young's modulus decreases with increasing yttrium concentration in excellent agreement with theoretical predictions. Finally, Y0.15Al0.85N and Y0.2Al0.8N layers show high crystalline stability in pure oxygen environment up to 800 °C, demonstrating high oxidation resistance even under harsh environmental conditions.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3