Affiliation:
1. School of Physical Science and Technology Northwestern Polytechnical University Xian 710072 China
2. State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xian 710072 China
3. School of Mechanical, Electrical & Information Engineering Shandong University Weihai 264209 China
Abstract
Titanium matrix composites (TMCs) with the addition of in situ ceramic reinforcing particulates have attracted extensive interest. Herein, additive‐manufactured Ti6Al4V/Al–5Ti–0.3C–0.2B alloys are fabricated from mixed powders by laser solid forming. The contents of Al–5Ti–0.3C–0.2B with 1.5, 2.5, and 5.0 wt% are considered. The results indicate the apparent microstructure transition from columnar grain to equiaxed grain with increasing content of Al–5Ti–0.3C–0.2B. The in situ reaction between the Ti6Al4V and Al–5Ti–0.3C–0.2B produces TiB, TiC, and Ti3AlC reinforcements. The increase of Al–5Ti–0.3C–0.2B content will refine grains and reduce α′ martensite phase, which is associated with the formation of TiB at the grain boundaries. As the content of Al–5Ti–0.3C–0.2B increases, the ultimate tensile strength of Ti6Al4V–x wt% (Al–5Ti–0.3C–0.2B) alloy increases from 993.8 MPa to 1233.6 MPa. The strength increases because of an increase of the solid phases TiB and Ti3AlC, which is ascribed to the presence of precipitation and grain refinement strengthening mechanisms. Meanwhile, the elongation of the alloy increases from 1.1% to 4.9% because the Ti3AlC phase is conducive to reducing thermal transfer and interfacial stress. These findings provide insights into the selection of reinforcement materials for optimizing mechanical properties of TMCs alloys.
Funder
National Natural Science Foundation of China
Shenzhen Fundamental Research Program
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献