Antisolvent‐Enhanced Crystallization of Luminescent All‐Green Organic–Inorganic Manganese‐Halide Films Deposited by Aerosol‐Assisted Chemical Vapor Deposition Technique on Either Glass or Elastomer Substrates

Author:

Balderas Jesús Uriel1,Romero Natalia1,Becerril Luis Alberto2,Falcony Ciro3,Alonso Juan Carlos1ORCID

Affiliation:

1. Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Ciudad Universitaria, A.P. 70-360, Coyoacán CDMX 04510 México

2. Programa de Doctorado en Nanociencias y Nanotecnología Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco Gustavo A. Madero CDMX 07360 México

3. Departamento de Física Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco Gustavo A. Madero CDMX 07360 México

Abstract

The in situ deposition of emerging organic–inorganic metal halides (OIMHs) films on glass or stretchable substrates has been challenging, and no methodology has been reported to achieve this goal. The aerosol‐assisted chemical vapor deposition technique using an antisolvent‐enhanced crystallization process (AEC–AACVD) is a simple, cost‐effective, scalable, and high‐throughput technique operated under ambient atmosphere and pressure. The AEC–AACVD technique (an all‐green chemistry methodology) is used in this work to deposit TPA2MnCl2Br2 luminescent films on glass and highly stretchable elastomer substrates. The effect of using different antisolvents on the structural, morphological, and photoluminescent (PL) characteristics of films deposited on glass is reported. It is found that the intensity of the characteristic green emission peaks at 511 nm for this OIMH, improving with the antisolvent application. The TPA2MnCl2Br2 films deposited using a mixture of antisolvents result in the maximum emission intensity when deposited on stretchable substrates, maintaining their overall PL characteristics. The processability, scalability, and performance reported here for these films prove their potential application in the next generation of OIMH‐based optoelectronic technologies.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3