Toward the Equiaxed Grain Microstructure in CrMnFeCoNi High‐Entropy Alloy Fabricated by Directed‐Energy Deposition

Author:

Jin Minsoo12ORCID,Chen Yunhui3456,Dovgyy Bogdan17,Lee Peter34,Pham Minh‐Son1ORCID

Affiliation:

1. Engineering Alloys Department of Materials Imperial College London Exhibition Road South Kensington London SW7 2AZ UK

2. Nanostructured Materials & Advanced Characterisation Laboratory Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea

3. Mechanical Engineering University College London Torrington Place London WC1E 7JE UK

4. ESRF ‐ The European Synchrotron Grenoble CS 40220 France

5. Department of Materials University of Manchester Manchester M13 9PL UK

6. RMIT Centre for Additive Manufacturing RMIT University Melbourne 3000 Australia

7. International Additive Manufacturing Group Domaniewska 3 05‐800 Pruszków (Polska) Poland

Abstract

The columnar grains in additively manufactured alloys increase the tendency to form solidification cracks and cause anisotropy. Studying the effect of process parameters on microstructure development helps to guide the manufacturing of the equiaxed grain microstructure. First, the effect of process conditions on the melt pool dimensions using in situ synchrotron X‐ray imaging and thermal profile and solidification condition using finite element simulation and calculation of thermodynamics phase diagrams of CrMnFeCoNi high‐entropy alloy fabricated by directed energy deposition is studied. Increasing the laser power reduces the thermal gradient to solidification rate ratio, pushing the solidification closer to the columnar‐equiaxed transition. Nevertheless, the simulations still indicate the columnar microstructure for all scan conditions in contrast to the experimental observation that shows single‐wall samples built at 200 W consisted of dominantly equiaxed grains, whereas columnar grains are dominant in samples built at 100 W. It is believed that in addition to the effect of thermal gradient and solidification rate, the chemical segregation (Mn and Ni) during solidification may promote dendrite detachment, hence assisting the transition to equiaxed grains. The multitrack deposition results in more solid beneath a new melt pool, increasing the thermal gradient that promotes more columnar grains in comparison to single tracks.

Funder

Imperial College London

Engineering and Physical Sciences Research Council

Rolls-Royce

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3