Rigidity‐Tunable Materials for Soft Engineering Systems

Author:

Roh Yeonwook1,Lim Daseul1,Kang Minji1,Cho Junggwang1,Han Seungyong1ORCID,Ko Seung Hwan23ORCID

Affiliation:

1. Multiscale Bioinspired Technology Lab Department of Mechanical Engineering Ajou University 206 World Cup‐ro, Yeongtong‐gu Suwon‐si Gyeonggi‐do 16499 Republic of Korea

2. Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 South Korea

3. Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU‐IAMD) Seoul National University Gwanak‐ro, Gwanak‐gu Seoul 08826 Korea

Abstract

Engineering systems that leverage the flexibility and softness of soft materials have been fostering revolutionary progress and broad interest across various applications. The inherently flexible mechanical properties of these materials lay the groundwork for engineering systems that can adapt comparably to biological organisms, enabling them to adjust to unpredictable environments effectively. However, alongside the positive benefits of softness, these systems face challenges such as low durability, continuous energy demands, and compromised task performance due to the inherently low stiffness of soft materials. These limitations pose significant obstacles to the practical impact of soft engineering systems in the real world beyond innovative concepts. This review presents a strategy that employs materials with variable stiffness to balance adaptability advantages with the challenge of low rigidity. The developments are summarized in materials capable of stiffness modulation alongside their applications in electronics, robotics, and biomedical fields. This focus on stiffness modulation at the material unit level is a critical step toward enabling the practical application of soft engineering systems in real‐world scenarios.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3