The High Temperature Strength of Single Crystal Ni‐base Superalloys – Re‐visiting Constant Strain Rate, Creep, and Thermomechanical Fatigue Testing

Author:

Sirrenberg Marc1ORCID,Babinský Tomás2,Bürger David1,Guth Stefan3,Parsa Alireza B.1,Thome Pascal4,Dlouhý Antonin2,Mills Michael J.5,Eggeler Gunther1

Affiliation:

1. Institut für Werkstoffe Ruhr‐Universität Bochum Universitätsstr. 150 44801 Bochum Germany

2. Institute of Physics of Materials Czech Academy of Sciences Žižkova 513/22 61600 Brno Czech Republic

3. Institut für Angewandte Materialien – Werkstoffkunde Karlsruher Institut für Technologie Engelbert‐Arnold‐Straße 4 76131 Karlsruhe Germany

4. Department of Materials Science and Engineering The University of Arizona Tucson AZ 85721‐0012 USA

5. Materials Science and Engineering Department The Ohio State University 2041 College Road Columbus OH 43210‐1178 USA

Abstract

The present work takes a new look at the high temperature strength of single crystal (SX) Ni‐base superalloys. It compares high temperature constant strain rate (CSR) testing, creep testing, and out‐of‐phase thermomechanical fatigue (OP TMF) testing, which represent key characterization methods supporting alloy development and component design in SX material science and technology. The three types of tests are compared using the same SX alloy, working with precisely oriented <001>‐specimens and considering the same temperature range between 1023 and 1223 K, where climb controlled micro‐creep processes need to be considered. Nevertheless, the three types of tests provide different types of information. CSR testing at imposed strain rates of 3.3 × 10−4 s−1 shows a yield stress anomaly (YSA) with a YSA stress peak at a temperature of 1073 K. This increase of strength with increasing temperature is not observed during constant load creep testing at much lower deformation rates around 10−7 s−1. Creep rates show a usual behavior and increase with increasing temperatures. During OP‐TMF loading, the temperature continuously increases/decreases in the compression/tension part of the mechanical strain‐controlled cycle (±0.5%). At the temperature, where the YSA peak stress temperature is observed, no peculiarities are observed. It is shown that OP‐TMF life is sensitive to surface quality, which is not the case in creep. A smaller number of cycles to failure is observed when reducing the heating rate in the compression/heating part of the mechanical strain‐controlled OP‐TMF cycle. The results are discussed on a microstructural basis, using results from scanning and transmission electron microscopy, and in light of previous work published in the literature.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Alexander von Humboldt-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3