Novel Spinel Multicomponent High‐Entropy Oxide as Anode for Lithium‐Ion Batteries with Excellent Electrochemical Performance

Author:

An Qingbin1ORCID,Li Song1ORCID,Zhou Jingjiao1,Ji Shijun1,Wen Zhongsheng1,Sun Juncai1

Affiliation:

1. Institute of Materials and Technology Dalian Maritime University Dalian 116026 China

Abstract

High‐entropy spinel oxides (HESOs) are a promising anode material for lithium‐ion batteries (LIBs) due to their high structural stability and theoretical capacity. However, the development of HESOs is mainly limited to five‐component equimolar systems, and the lithium‐storage mechanism is still controversial. A nonequimolar six‐component oxide, (CoMnZnNiMg)2CrO4, is synthesized using a solution combustion method. The prepared material is a HESOs, consisting of homogeneous nanoparticles with a mesoporous structure. (CoMnZnNiMg)2CrO4 exhibits high rate performance (371 mAh g−1 at 2000 mA g−1) and long cycling stability (608 mAh g−1 after 200 cycles at 200 mA g−1). A variety of constituent elements exist uniformly and stably in a spinel phase due to the high‐configuration entropy‐induced phase‐stabilization effect, and the synergistic effect of the various valence elements in the material results in the excellent electrochemical performance. The outstanding electrochemical kinetic properties of the HESOs are mainly attributed to the high‐ionic‐diffusion coefficients and pseudocapacitance contributions. In addition, the HESOs electrodes undergo an amorphous conversion during the initial charge/discharge process. It is shown that the rational design and modulation of the active component is an effective way to obtain high‐performance HESOs for LIBs.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3