Full‐Field Analyses of Density‐Graded Elastomeric Foams Under Quasistatic and Impact Loadings

Author:

Smeets Mark1,Kauvaka Paul1,Uddin Kazi2,Koohbor Behrad2,Youssef George1ORCID

Affiliation:

1. Experimental Mechanics Laboratory Mechanical Engineering Department San Diego State University 5500 Campanile Drive San Diego CA 921821 USA

2. Department of Mechanical Engineering Rowan University 201 Mullica Hill Rd. Glassboro NJ 08028 USA

Abstract

Density‐graded elastomeric foams are emerging as effective protective structures to guard humans against mechanical loading. This research investigates the deformation of ungraded and graded foams under quasistatic and impact scenarios using digital image correlation (DIC). The graded samples are assembled using two interfacing strategies (seamless and adhered), leveraging the adhesiveness of the foam slurry and bulk polyurea, respectively. Deformation mechanisms, including the effect of the interface type on strain transduction and localization in density‐graded structures, are imperative for improving the impact efficacy of protective paddings. Cuboid foam plugs are subjected to quasistatic and impact loading while recording the corresponding deformation for DIC analysis. The DIC results are separated into three case studies based on the number of layers (1, 2, and 3). The interface effect on the overall mechanical performance of polyurea foam is revealed from the bilayer, monodensity samples, showing drastic differences between the deformations within each layer. Seamless interface samples exhibit greater compliance than their adhered counterparts in the bilayer density‐graded configurations. Trilayer‐graded foams broaden strain–time history, extend the impact duration, and reduce strains. This research substantiates the importance of interfacing and gradation strategies on the mechanical response of elastomeric foams as a function of strain rate.

Funder

National Science Foundation

U.S. Department of Defense

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3