Observing High‐Cycle Fatigue Damage in Freestanding Gold Thin Films with Bulge Testing and Intermittent Transmission Electron Microscopy Imaging

Author:

Krapf Anna1ORCID,Merle Benoit2ORCID,Gebhart David D.3ORCID,Reiter Marco3,Lassnig Alice3ORCID,Göken Mathias1,Cordill Megan J.3ORCID,Gammer Christoph3ORCID

Affiliation:

1. Department of Materials Science & Engineering, Institute I Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Martensstraße 5 91058 Erlangen Germany

2. Institute of Materials Engineering University of Kassel Mönchebergstr. 3 34125 Kassel Germany

3. Erich‐Schmid‐Institute of Materials Science Austrian Academy of Sciences Jahnstraße 12 8700 Leoben Austria

Abstract

Bulge testing is a potent technique for measuring the mechanical properties of freestanding thin films, but in situ imaging is only possible in limited experimental configurations. This poses a serious limitation for unraveling nanoscale failure mechanisms, such as the deformation mechanisms induced by cyclic loading in freestanding gold thin films of 150 nm thickness. Herein, a new experimental workflow combining standalone bulge cyclic testing with intermittent high‐resolution imaging by transmission electron microscopy (TEM) at specific positions of interest is introduced. The observed low dislocation activity in planar areas of the thin films is consistent with the slow strain accumulation during high‐cycle fatigue testing. In contrast, notches in the films lead to localized plasticity with sustained dislocation activity, but also grain growth and subgrain formation. At a more advanced stage, cracks proceed along grain boundaries, with crack bridging seemingly slowing down their propagation. The presented setup can be used with a number of TEM‐based characterization techniques and has the potential to reveal cyclic deformation mechanisms in several thin‐film systems.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3