Anisotropic Wettability Induced by Femtosecond Laser Ablation

Author:

Shojaeian Mostafa1,Yetisen Ali K.2ORCID,Tasoglu Savas1345

Affiliation:

1. Department of Mechanical Engineering Koç University Sariyer/Istanbul 34450 Turkiye

2. Department of Chemical Engineering Imperial College London London SW7 2AZ UK

3. Koç University Arçelik Research Center for Creative Industries (KUAR) Koç University Sariyer/Istanbul 34450 Turkiye

4. Koç University Research Center for Translational Medicine Koc University Sariyer/Istanbul 34450 Turkiye

5. Boğaziçi Institute of Biomedical Engineering Boğaziçi University Çengelköy/Istanbul 34684 Turkiye

Abstract

Laser ablation has been utilized for locally and selectively modifying the surface wettability of materials in situ and enabling on‐demand microfabrication. The anisotropic wettability has been observed on chemical and/or topographical patterns, such as an array of laser‐inscribed strips with spacings, created on surfaces during the fabrication process. Herein, the effectiveness of the femtosecond laser ablation is evaluated in selectively modifying surface wettability. The areas processed by laser ablation exhibit anisotropic wetting behavior, even after the laser strips are overlapped. The laser‐induced anisotropic surface wettability is present in space governed by laser scanning speed, scan/strip overlap, laser fluence, scan repetition, and bidirectional scanning angle. Moreover, the femtosecond laser ablation process is optimized to enhance the conventional laser inscription, leading to a modified and consistent methodology to achieve cost‐effective fabrication.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3