Affiliation:
1. Department of Electrical Engineering Information Technology University of the Punjab (ITU) Lahore 54000 Pakistan
2. Department of Biomedical Engineering University of Engineering and Technology Narowal Campus Lahore 54890 Pakistan
3. Innovative Technologies Laboratories (ITL) King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
Abstract
Tremendous development in intelligent wearable gadgets creates opportunities for flexible strain sensors. Comfortable and safe flexible strain sensors have high demand in wearable applications and therefore the textile‐based strain sensors are desired. Achieving attributes like easy fabrication, cost‐effectiveness, high sensitivity, good stability, and portability is still a challenge to overcome. In this regard, textile‐based flexible strain sensors, one on jeans fabric and other on cotton fabric, are presented. A conventional interdigitated electrode structure is adopted and sensors are prepared by facile and economical fabrication process. Both sensors own high sensitivity factors, i.e., gauge factor >200 and stability of ≈10 000 cycles. The anticipated works show a linear response R2 = 0.99, low hysteresis <5%, and minimum resolution <7°. The intended sensors are implemented for real‐time application, i.e., the physiotherapy of the knee and neck. The jeans‐fabric‐based sensor is used for knee therapy and the cotton for neck. The daily therapy sessions are recorded and examined. The sensors respond well to the applied strain during therapy sessions, proving to be an outstanding choice for integration into biomedical wearable devices for therapeutic purposes. The proposed sensors can also be auspicious candidates for targeting many other wearable applications.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献