Thermo‐Mechanical Characteristics of a Sandwich Cylindrical Shell with Entangled Metallic Wire Mesh: Numerical and Experimental Analysis

Author:

Xue Xin1ORCID,Lin Congcong1,Wei Yuhan1,Xiong Yunlingzi1,Zhang Mangong2,Shao Yichuan1,Liao Juan1ORCID

Affiliation:

1. Institute of Metal Rubber & Vibration Noise School of Mechanical Engineering and Automation Fuzhou University Fuzhou 350116 China

2. Wuhan Second Ship Design and Research Institute Wuhan Hubei 430064 China

Abstract

As a novel lightweight composite structure with notable mechanical resistance and thermal insulation characteristics in high‐temperature environments, the sandwich cylindrical shell with entangled metallic wire mesh (SCS‐EMWM) has been growing interest in industrial applications. This study focuses on investigating the thermo‐mechanical behavior of the SCS‐EMWM in high‐temperature environments. The static mechanical properties of entangled metal wire mesh (EMWM) are first characterized, and the macroscopic mechanical properties are identified using the Ogden–Mullins model. Subsequently, the deformation modes at different densities and temperatures are analyzed through theoretical and finite element methods. The radial compression test of SCS‐EMWM is performed to characterize its energy dissipation (ΔW), loss factor (η), and secant stiffness (K). The quasi‐static loading‐unloading results of the EMWM reveal a positive correlation between temperature, density, and the mechanical behavior. In addition, as the density and temperature increase, the peak load of SCS‐EMWM continuously increases from 20 to 200 N. Under high‐temperature conditions, the radial compression test of SCS‐EMWM reveals a significant concurrence between experimental and simulation results regarding load variations. Furthermore, in comparison to EMWM, the loss factor of SCS‐EMWM exhibits an approximate increase of 0.1 and shows a positive correlation with temperature, while it decreases with increasing density.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3