Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance

Author:

Heffner Herman12ORCID,Soldera Marcos2ORCID,Ränke Fabian2,Lasagni Andrés Fabián23ORCID

Affiliation:

1. Departamento de Química Universidad Nacional del Sur, Instituto de Química del Sur (INQUISUR, UNS-CONICET) Av. Alem 1253 Bahía Blanca B800°CPB Argentina

2. Institut für Fertigungstechnik Technische Universität Dresden George-Bähr-Str. 3c 01069 Dresden Germany

3. Fraunhofer-Institut für Werkstoff und Strahltechnik (IWS) Winterbergstr 28 01277 Dresden Germany

Abstract

Transparent conductive oxides (TCOs) are used in solar cells not only to extract photogenerated carriers but also to allow sunlight to reach the photoactive material. Therefore, controlling the electrical and optical properties of such oxides is crucial for the optimization of the efficiency of solar cells. Herein, direct laser interference patterning (DLIP) method is used to control the surface morphology, optical and electrical properties of fluorine‐doped tin oxide (FTO) by applying femtosecond laser pulses. The topography characterization reveals periodic line‐like microstructures with a period of 3.0 μm and average heights between 20 and 185 nm, depending on the applied laser fluence levels. Laser‐induced periodic surface structures are observed on the valleys of the texture aligned perpendicularly to the laser radiation polarization. A relative increase in the average total and diffuse optical transmittance up to 5% and 500%, respectively, is obtained in the 400–800 nm spectral range as a consequence of the generated micro‐ and nanostructures. Calculations of two figures of merit suggest that the texturing of FTO might enhance the efficiency of solar cells, in particular dye‐sensitized (DSSCs). The findings of this study confirm that DLIP is a convenient technique for structuring electrodes for highly efficient optoelectronic devices.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3