Bioinspired 3D‐Printed Auxetic Structures with Enhanced Fatigue Behavior

Author:

Shirzad Masoud1,Kang Juhyun2,Kim Garin1,Bodaghi Mahdi3,Nam Seung Yun14ORCID

Affiliation:

1. Industry 4.0 Convergence Bionics Engineering Pukyong National University Busan 48513 Korea

2. Department of Biomedical Engineering Pukyong National University Busan 48513 Korea

3. Department of Engineering School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK

4. Major of Biomedical Engineering Division of Smart Healthcare Pukyong National University Busan 48513 Korea

Abstract

Recently, auxetic metastructures have gained considerable attention in various fields of study due to their unique characteristics. This study aims to design and fabricate bioinspired auxetic structures and comprehensively investigate the static and dynamic mechanical properties of those architectures under tensile and compressive loads. A comparative analysis is carried out with a conventional structure, considering static tensile and compressive tests, as well as dynamic tension–tension and compression–compression assessments. Experimental measurements and finite‐element analysis are utilized to evaluate various parameters of the scaffolds, such as Young's modulus, yield strength, energy absorption, stress distribution, Poisson's ratio, and fatigue properties. The findings reveal that bioinspired auxetic structures can appropriately mimic the physical attributes and stress–strain characteristics of human tissue, such as the Achilles tendon. Furthermore, these bioinspired auxetic structures significantly enhance the cycles to failure compared to conventional structures, accompanied by notable improvements in energy absorption. Among the auxetic structures, the star configuration exhibits remarkable tolerance to tensile fatigue loads, while the sharp sinus structure demonstrates the highest tolerance to cycles to failure under compression–compression loads. The static and fatigue properties of bioinspired auxetic structures indicate their potential for biomedical applications.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3