A Critical Review of Laser Shock Peening of Aircraft Engine Components

Author:

Ye Yixuan1,Zhang Yu1,Huang Tao1,Zou Shikun2,Dong Yalin3,Ding Han1,Vasudevan Vijay K.4,Ye Chang1ORCID

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. National Key Laboratory for High Energy Density Beam Processing Technology AVIC Manufacturing Technology Institute Beijing 100024 China

3. Department of Mechanical Engineering The University of Akron Akron OH 44325 USA

4. Department of Materials Science and Engineering University of North Texas Denton TX 76207 USA

Abstract

Many aviation accidents are caused by the failure of aircraft engine components, and engine blades are especially vulnerable to high‐cycle fatigue fracture in severe working environments as well as to impact damage caused by foreign objects. To address this problem, the United States took the lead and has been successful in implementing laser shock peening (LSP) as a surface treatment for aircraft engine components to enhance their fatigue performance. This review provides an overview of the development of LSP for use in treating aircraft engine components over the past three decades, with a brief introduction to the development of high‐energy pulsed lasers for LSP. A particular focus of this review is on the limitations and challenges associated with the application of LSP for treating critical aircraft engine components. It is hoped that this review serves as a reference for future research and development that can lead to better performance of these components.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3