Mechanism of Multilayer Graphene/Ionic Liquid Synergistic Regulation of Interface State under Current‐Carrying Friction

Author:

Cheng Gangqiang12ORCID,Li Xiao3,Zhang Duo13,Lv Baoying1,Zhuang Ganghao12,Liu Ziyan12,Li Qianqian12,Mo Youtang12,Luo Chaogui3,Zhou Ming123ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering Guangxi University of Science and Technology Liuzhou 545006 China

2. Guangxi Earthmoving Machinery Collaborative Innovation Center Liuzhou 545006 China

3. Guangxi Tsinglube New Material Technology Co., Ltd. 279 Feilu Avenue, Luzhai County Liuzhou Guangxi 545006 P. R. China

Abstract

Herein, improving the conductivity of the lubricant itself is the main idea behind current‐conductive lubricant designs. However, as per previous studies, the interface state has a more dominant influence on the interface conductivity than the conductivity of the lubricant. Therefore, improving the interface state is a more direct and effective way to improve the interface conductivity. In this study, improving the interface state is the primary idea underlying the design of a conductive lubricant. Multilayer graphene/ionic liquid (MG/IL) composites with excellent interfacial adsorption properties are prepared using IL non‐covalently modified graphene. Subsequently, corresponding conductive greases are synthesized using MG, IL, and MG/IL as additives. The lubricating and conductive properties of these greases are characterized by performing current‐carrying friction tests. In the results, it is shown that when MG/IL is used as an additive, the grease exhibits excellent lubricating performance and the lowest average contact resistance. This finding is primarily attributed to the MG and IL in MG/IL acting synergistically to improve the interface state significantly, which decreases the contact resistance and increases the conductivity of the friction interface. In this work, a novel idea is provided for the design of conductive lubricants.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Scientific Research and Technology Development Program of Guangxi

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3