Fatigue Resistance of an Anodized and Hardanodized 6082 Aluminum Alloy Depending on the Coating Thickness in the High Cycle Regime

Author:

Winter Lisa1ORCID,Lampke Thomas1ORCID

Affiliation:

1. Materials and Surface Engineering Group Institute of Materials Science and Engineering Chemnitz University of Technology D-09107 Chemnitz Germany

Abstract

In this study, the high cycle fatigue behavior of an anodized 6082 aluminum alloy is investigated. Main focus is on the most relevant influencing factors for crack initiation and propagation under cyclic loading and damage mechanisms considering coating type, thickness, and residual stresses. The bare substrate is compared to anodized and hardanodized specimens with three coating thicknesses, for each coating type, in the range from 20 to 70 μm. Coating hardness and microstructure as well as residual stresses are analyzed. Fatigue and fracture behavior under alternating tension–compression loading is determined. Dependent on the coating thickness, the fatigue strength is reduced by 8%–50% after anodizing and by 50%–62% after hardanodizing. As the coating thickness is equal to the initial crack length from a fracture mechanical point of view, stress intensities at the crack tips are higher for thicker coatings respectively longer initial crack lengths. Therefore, propagation of fatigue‐induced cracks from the coating into the substrate is promoted for a higher coating thickness resulting in premature failure. A significant correlation between the coating thickness and tensile residual stresses induced by both coatings in the subjacent substrate is not found and residual stress influence on the overall fatigue strength is only minor.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3