Fatigue Behavior of Polymer Encapsulated Graphene to Mitigate Interfacial Fatigue Damage

Author:

Islam Md Akibul1ORCID,Kumral Boran1,Wang Guorui2,Cui Teng3,Hou Yaoping14,Pan Peng1,Liu Xinyu1,Filleter Tobin1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering University of Toronto Toronto ON M5S 3G8 Canada

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Modern Mechanics University of Science and Technology of China Hefei 230027 China

3. Department of Mechanical Engineering Stanford University Stanford CA 94305 USA

4. Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230027 China

Abstract

In applications such as flexible electronic devices, graphene, and other 2D materials are frequently in contact with stretchable polymeric substrates. The interface between 2D materials and polymers is dominated by weak van der Waals forces and can eventually degrade due to the frequent dynamic mechanical loads that these devices experience. This can lead to significant local delamination and shear fracture of the 2D materials. Using the polydimethylsiloxane (PDMS) encapsulation method, it is shown that the damage in graphene is significantly mitigated when it is capped during dynamic loading. To track the spread of damage in both encapsulated and nonencapsulated graphene, in situ, cyclic loading is performed. The fundamental process driving this substantial reduction in damage propagation in the 2D lattice is explained by the conventional shear lag model. It is also observed that softer PDMS substrate and capping layer completely mitigate the fatigue damage in graphene for 100 cycles at 10% applied fatigue strain.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graphene-enhanced PCL electrospun nanofiber scaffolds for cardiac tissue engineering;The International Journal of Artificial Organs;2024-08-08

2. Temperature-dependent failure of atomically thin MoTe2;Journal of Molecular Modeling;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3