Affiliation:
1. School of Metallurgical Engineering Xi'an University of Architecture & Technology No. 13 Yanta Road Xi'an Shaanxi Province 710055 China
Abstract
Hot compression experiments with the deformation temperatures of 750–950 °C and the strain rates of 0.01–10 s−1 are carried out on a Gleeble‐3500 thermal‐mechanical simulator. The flow behavior and dynamic recrystallization (DRX) mechanism of the Cu‐Ti‐Fe alloy are systematically studied under different hot deformation conditions. According to the curves of flow stress and work hardening rate, the DRX critical condition of the alloy is obtained, and the critical stress value of DRX is small under high‐temperature and low‐strain rate. After fitting, the logarithmic values of the critical stress and critical strain have a linear relationship with lnZ, which indicates that the alloy is more prone to DRX at high temperatures and low‐strain rates. The Arrhenius constitutive model of the alloy is established, the linear correlation coefficient (R2) is 0.984. Combined with the microstructure of Cu‐Ti‐Fe alloy, the microstructure evolution characteristics and DRX mechanism are elucidated. The dominant mechanism of the alloy under the deformation temperature of 750–950 °C is the DRX mechanism. The low‐angle grain boundaries (LAGBs) transform into high‐angle grain boundaries (HAGBs) and continuous dynamic recrystallization (CDRX) grains form. Abundant dislocations gather near the HAGBs, causing grain boundaries to protrude. High‐temperature conditions make the dislocations disappear, forming discontinuous dynamic recrystallization (DDRX) grains.
Funder
Key Technologies Research and Development Program
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献