Affiliation:
1. James Watt School of Engineering University of Glasgow Glasgow G12 8QQ UK
2. Walker Department of Mechanical Engineering The University of Texas at Austin 204 E Dean Keeton St Austin TX 78712 USA
3. J Department of Aeronautics and Astronautics Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge Massachusetts 02139 USA
4. Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge Massachusetts 02139 USA
Abstract
This study demonstrates the mechanical, self‐sensing, and biological characteristics of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs)‐engineered 3D‐printed polyetheretherketone (PEEK) composite scaffolds, utilizing custom‐made feedstocks. Microstructural analysis and macroscale testing reveal that the PEEK/CNT scaffolds with 6 wt% CNT content and 46% relative density achieve a gauge factor of up to 75, a modulus of 0.64 GPa, and a compressive strength of 64 MPa. The PEEK/CNT2.5/GNP2.5 scaffolds evince still better performance, at a relative density of 73%, reporting a modulus of up to 1.1 GPa and a compressive strength of 122 MPa. Importantly, stability in mechanical and piezoresistive performance up to 500 cycles is noted, indicating a durable and reliable performance under cyclic loading. Murine preosteoblast cells (MC3T3‐E1) are used to biologically characterize sulfonated scaffolds over 14 days. Cytotoxicity, DNA, and alkaline phosphatase (ALP) levels are quantified through in vitro assays, evaluating cell viability, proliferation, and osteogenic properties. Notably, PEEK/CNT 6 wt% scaffolds exhibit nearly 80% cytocompatibility, while PEEK/CNT2.5/GNP2.5 scaffolds reach nearly 100%. Both types of scaffolds support cell differentiation, as evidenced by elevated ALP levels. These findings carry significant promise in bone tissue engineering, paving the way for the development of adaptive, intelligent structural implants boasting enhanced biocompatibility and self‐sensing capabilities.
Funder
Engineering and Physical Sciences Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献