Affiliation:
1. Karlsruhe Institute of Technology (KIT) Institute of Applied Materials – Ceramic Materials and Technologies (IAM–KWT) Haid-und-Neu-Str. 7 76131 Karlsruhe Germany
2. Forschungszentrum Jülich Institute of Energy and Climate Research – Materials Synthesis and Processing (IEK-1) 52428 Jülich Germany
Abstract
Herein, the impact of AC and DC electric fields on microstructure evolution in strontium titanate is investigated. The focus is on nonthermal effects by using current‐blocking electrodes. The seeded polycrystal technique allows investigating the impact of a DC electric field on grain growth for different grain‐boundary orientations and the impact of the surrounding atmosphere. As in previous studies, faster grain growth is observed at the negative electrode. This effect is stronger for the (100) orientation and in reducing atmosphere. In AC electric field at 1450 °C, a low‐enough frequency results in faster grain growth at both electrodes. These findings agree well with previous studies, where an electromigration of oxygen vacancies is found to cause a local reduction at the negative electrode, resulting in less space charge, less cationic segregation, and a higher grain‐boundary mobility. At 1500 °C, AC electric fields are found to cause a complete grain growth stagnation at very small grain sizes. This behavior is unexpected; the physical reasons are not clear. Herein, a brief study of sintering in DC electric field reveals slightly faster sintering if a field is applied.
Funder
Deutsche Forschungsgemeinschaft
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献