Self‐Powered Rapid Response Flexible Pressure Sensor for Wearable Application

Author:

Yin Junwei1,Guo Shuning1,E Mingfeng1,Liu Hui1,Liu Zhihui2,Ding Wanyu2,Li Dongming3,Cui Yunxian1ORCID

Affiliation:

1. School of Mechanical Engineering Dalian Jiaotong University Dalian 116028 China

2. School of Materials Science and Engineering Dalian Jiaotong University Dalian 116028 China

3. College of Mechanical and Electronic Engineering Dalian Minzu University Dalian 116600 China

Abstract

Flexible pressure sensors have attracted a lot of attention in fields such as medicine and healthcare due to their ease of making wearable devices. However, the development of flexible pressure sensors is facing the challenges of a complex manufacturing process and high cost. Herein, a zinc oxide (ZnO) piezoelectric film flexible pressure sensor with a 3 × 3 sensor array presented through an extremely simple and ultralow‐cost fabrication process is reported. The 3 × 3 sensor array in series and again, in parallel. The output voltage of the 3 × 3 sensor array is significantly higher compared to the original thin‐film piezoelectric sensors at the same film thickness. The ZnO flexible pressure sensor shows good linear sensitivity and high durability over 4000 cycles of loading in the test range of 0–14 N. The response and recovery times tend to decrease as the dynamic pressure increases in the experimental range. Furthermore, a high‐precision dynamic force calibration system through a comparison between the open‐loop and closed‐loop strategies used in the dynamic force calibration experiments that are performed is presented. Potential applications of the sensor are demonstrated, including elbow flexure and finger tapping. The sensor also shows the ease of massive fabrication.

Funder

National Natural Science Foundation of China

Foundation of Liaoning Province Education Administration

Doctoral Start-up Foundation of Liaoning Province

Dalian University of Technology

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3