On the Post‐Processing of Complex Additive Manufactured Metallic Parts: A Review

Author:

Pourrahimi Shamim1ORCID,Hof Lucas A.1ORCID

Affiliation:

1. Mechanical Engineering Department École de Technologie Supérieure 1100, rue Notre‐Dame Ouest Montréal Québec H3C 1K3 Canada

Abstract

Additive manufacturing (AM) is gaining more attention due to its capability to produce customized and complex geometries. However, one significant drawback of AM is the rough surface finish of the as‐built parts, necessitating post‐processing for achieving the desired surface quality that meets application requirements. Post‐processing of complex geometries, such as parts with internal holes, lattice structures, and free‐form surfaces, poses unique challenges compared to other components. This review classifies various post‐processing methods employed for complex AM parts, presenting the experimental conditions for each treatment alongside the resulting improvement in surface roughness as a success criterion. The post‐processing methods are categorized into four groups: electrochemical polishing (ECP), chemical polishing (CP), mechanical polishing, and hybrid methods. Notably, mechanical methods exhibit the highest roughness improvement at 69.9%, followed by ECP (59.9%), hybrid methods (47.4%), and CP (49.5%). Nevertheless, mechanical post‐processing techniques are less frequently utilized for lattice parts, making chemical or electrochemical methods more promising alternatives. In summary, all four categories of post‐processing methods can improve the internal surfaces quality of AM holes. While mechanical methods offer the most substantial roughness improvement overall, chemical and electrochemical methods show particular potential for addressing the challenges associated with complex geometries.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Reference92 articles.

1. ASTM ISO 52900‐21 Additive Manufacturing — General Principles — Fundamentals and Vocabulary2021.

2. The metallurgy and processing science of metal additive manufacturing

3. E.Matias B.Rao inPortland Int. Conf. on Management of Engineering and Technology 2015 Portland OR September2015 p.551.

4. Additive manufacturing (AM) and nanotechnology: promises and challenges

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of gasket material on flange face corrosion;International Journal of Pressure Vessels and Piping;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3