Overcoming Moisture‐Induced Degradation in Organic Solar Cells

Author:

Wachsmuth Josua1,Distler Andreas1ORCID,Deribew Dargie2,Salvador Michael13,Brabec Christoph J.14,Egelhaaf Hans-Joachim14

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg Faculty of Engineering Department of Material Science Materials for Electronics and Energy Technology (i-MEET) Martensstraße 7 91058 Erlangen Germany

2. Department of Engineering and Physics Karlstad University 65188 Karlstad Sweden

3. KAUST Solar Center King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia

4. Helmholtz-Institute Erlangen-Nürnberg (HI ERN) Forschungszentrum Jülich GmbH (FZJ) Immerwahrstraße 2 91058 Erlangen Germany

Abstract

Unencapsulated organic solar cells are prone to severe performance losses in the presence of moisture. Accelerated damp heat (85 °C/85% RH) studies are presented and it is shown that the hygroscopic hole‐transporting PEDOT:PSS layer is the origin of device failure in the case of prototypical inverted solar cells. Complementary measurements unveil that under these conditions a decreased PEDOT:PSS work function along with areas of reduced electrical contact between active layer and hole‐transport layer are the main factors for device degradation rather than a chemical reaction of water with the active layer. Replacements for PEDOT:PSS are explored and it is found that tungsten oxide (WO3) or phosphomolybdic acid (PMA)—materials that can be processed from benign solvents at room temperature—yields comparable performance as PEDOT:PSS and enhances the resilience of solar cells under damp heat. The stability trend follows the order PEDOT:PSS << WO3 < PMA, with PEDOT:PSS‐based devices failing after few minutes, while PMA‐based devices remain nearly pristine over several hours. PMA is thus proposed as a robust, solution‐processable hole extraction layer that can act as a one to one replacement of PEDOT:PSS to achieve organic solar cells with significantly improved longevity.

Funder

H2020 Societal Challenges

Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3