PEDOT:PSS/Natural Rubber Latex Inks for Screen‐Printing Multifunctional Wearable Strain–Humidity Sensors

Author:

Ren Ting1,Yang Hui1,Zhang Jizhen2,Lv Ke2,Kong Derui2,Jiang Fengqing1,Chang Yuying1,Yu Ping1,Tao Jinlong2,Wang Di3,Kong Na24ORCID,Shao Yanqiu1

Affiliation:

1. Heilongjiang Key Laboratory of Photoelectric Functional Materials College of Chemistry and Chemical Engineering Mu Dan Jiang Normal University Mudanjiang 157011 China

2. Hainan Provincial Key Laboratory of Natural Rubber Processing Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 China

3. Pingyi Country Inspection and Testing Center Pingyi 273300 China

4. School of Life and Environmental Sciences Deakin University Victoria 3216 Australia

Abstract

Wearable strain–humidity sensors are increasingly recognized for their role in healthcare and detecting human motion signals. However, many strain–humidity sensors require complex manufacturing processes and have limited applicability. In this study, based on the good miscibility between natural rubber latex (NRL) and poly (3,4‐ethylenedioxythiophene):poly (4‐styrenesulfonate) (PEDOT:PSS), PEDOT:PSS/NRL composite conductors are transferred onto fabric substrate through screen printing and prepared high‐performance strain–humidity sensor. The PEDOT:PSS/NRL blends strain–humidity sensor exhibited good stability and durability (500 cycles) at 10% strain, achieves a gauge factor (GF) of 123.8 with excellent linearity, making it operational in detecting various human motions, such as finger bending, elbow bending, wrist bending, and so on. In addition, the PEDOT:PSS and water molecules interaction results in a humidity response time as low as 0.72 s and recovery time as low as 0.85 s for the PEDOT:PSS/NRL composite strain–humidity sensor, and a wide relative humidity detection range (6–83%), allowing it to be utilized for precise detection of human breathing. Furthermore, it can monitor the use's joint movement, facial muscle movement, and respiratory rate, which show its potential application prospect in health monitoring.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3