Highly Sensitive Flexible Capacitive Pressure Sensor with Porous Hierarchical Structure Realized by a Microwave Curing Method

Author:

Ma Rui1,Zhao Yilin1,Chen Haobing1,Zeng Ziran1,Li Yunfan1,Wang Ruiyuan1,Liu Feng12ORCID

Affiliation:

1. School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 China

2. Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration Wuhan University Wuhan Hubei 430072 China

Abstract

The introduction of porous hierarchical microstructures effectively improves the sensitivity of flexible pressure sensors. However, it is difficult to achieve porous hierarchical microstructures for pressure sensors through inexpensive, efficient, and simple preparation methods. Herein, a hemispherical array with porous hierarchical microstructure is prepared on polydimethylsiloxane substrate using a simple one‐step microwave curing process with glucose as porogen. Furthermore, the flexible electrode based on the polydimethylsiloxane substrate is combined with an ionic liquid polymeric gel membrane to obtain a flexible capacitive pressure sensor. Thanks to the deformability of porous hierarchical microstructure and the double‐dielectric layer effect of ionic liquid polymeric gel membrane, the sensor displays an ultrahigh sensitivity of 131.21 kPa−1 within 0–1 kPa. Meanwhile, the sensor has short response time, excellent dynamic loading stability, as well as excellent long‐term stability (>3000 cycles). In application testing, the sensor effectively monitors various physiological activities like pulse, breathe, speech, and swallowing, demonstrating its good prospects in the field of health electronics. Most importantly, the proposed microwave curing method can realize the preparation of porous hierarchical structure on flexible substrate through a one‐step process, which offers a fresh way for the economical, green, and efficient preparation of high‐sensitivity capacitive pressure sensors.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emulsion template – based porous silicones with piezocapacitive response;Reactive and Functional Polymers;2024-07

2. Wearable Devices for Respiratory Monitoring;Advanced Functional Materials;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3