Constructing Conductive MoOx Thin Films by Plasma‐Enhanced Atomic Layer Deposition

Author:

Zhou Ling1,Guan Zhixi1,Yang Lin1,Guo Daying1ORCID,Wu Lianhui1,Chen Xi'an1ORCID,Wang Shun1

Affiliation:

1. Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China

Abstract

Herein, amorphous molybdenum oxide films are constructed by thermal atomic layer deposition (T‐ALD) and plasma‐enhanced atomic layer deposition (PE‐ALD). The physical and chemical properties of molybdenum oxide films prepared by the two methods are systematically compared by means of film growth law, atomic force microscope, scanning electron microscope, etc. The results show that the amorphous molybdenum oxide physical phase prepared by both ALD methods is MoO3. Compared with T‐ALD MoO3, the growth rate of MoO3 thin films prepared by PE‐ALD is higher. Compared to PE‐ALD MoO3, the MoO3 films prepared by T‐ALD did not have nucleation delayed to a laminar growth mode, resulting in smoother deposited films and contained less impurity carbon. The MoO3 prepared by PE‐ALD contains 7.4% impurity carbon. This carbon‐doped film significantly improves the conductivity of the MoO3 film and shows good electrochemical activity. As expected, the MoO3 films prepared by PE‐ALD show good electrocatalytic oxygen evolution reaction. The overpotential is only 259 mV at 10 mA cm−2 and continues to evolution oxygen for 60 h with almost no attenuation, indicating that carbon doping significantly improves the catalytic intrinsic activity and stability of MoO3.

Funder

Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3